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A general theory of inequalities based on a matrix of Karle & Hauptman's type is given, which is 
formulated by a somewhat different method from that given in our previous paper (Oda, Naya & 
Taguchi, 1961). I t  is shown that inequalities so far reported by different authors can be easily 
derived from the present theory. 

1. I n t r o d u c t i o n  

Since Harker & Kasper (1948) first derived their 
inequalities to be imposed among structure factors, 
this problem has been treated by a number of authors ; 
i.e. Gillis (1948), MacGillavry (1950), Karle & Haupt- 
man (1950), Goedkoop (1950, 1952), Okaya & Nit ta  
(1952), de Wolff & Bouman (1954), yon Eller (1955, 
1960), Bouman (1956) and LSfgren (1960), etc. 

In  the two papers reported by the present author 
and others (Taguchi & :Naya, 1958; Oda, :Naya & 
Taguchi, 1961), we derived a non-negative matrix of 
Karle & Hauptman 's  type which was based upon a 
matrix-representation of Fourier series as follows: 

1 N--I h 
F = ~  ~FhC , (1) 

h=O 

where C h expresses a direct product of three matrices 
C a, C ~ and C Z, 

Ch=Ch×C~×C l, h , ] c , l = 0 , 1 , 2 ,  . . . , N - l ,  

- 0  1 
1 0  

C = 1 0 (2) 

l 0  

C is a regular representation of a cyclic group of 
order N, with N large. Starting from expression (1) 
and reducing F by symmetry  based on a matrix- 
theoretical t reatment,  we obtained a general form of 
inequalities which is in harmony with that  of Goed- 
koop (1952). This corresponds to a generalization of 
the method given by Bouman (1956) for the case of 
P~, and gives us a ' fundamental form of inequalities' 
applicable to any given space group. However, some 
of the inequalities reported by different authors could 
not be derived by this method• 

In the present paper, we shall show a more gener- 
alized theory of inequalities based on a matrix of 
Karle & Hauptman 's  type by a somewhat different 
method from that  given in our previous paper. First, 

we shall utilize the geometrical considerations to derive 
inequalities involving the structure factors, as shown 
by yon Eller (1955, 1960). The results obtained by the 
present method will not only give the fundamental 
form of inequalities reported by the author and others 
in the previous paper, but also will cover inequalities 
of other types found by different authors• 

2 .  M a t h e m a t i c a l  p r e l i m i n a r y  

2-1. Properties of non-negative matrix 
Let us note tha t  any non-negative matrix has the 

following properties. 

(I) The trace of any non-negative matrix is always 
non-negative. 

(II) The product of any two non-negative matrices 
is also non-negative, if they  can be diagonalized by 
a same transformation. 

(III) The product of any matrix and its transposed 
and complex-conjugate is always non-negative. 

2.2• Selection-operator for the structure factor 
We shall introduce a selection-operator (~hi which 

picks up a structure factor 2'hi from (1) by the follow- 
ing operation. 

tr. {ChiF}-----Fhi, C'hi=C-hi, (3) 

where symbol ,-- stands for a transposed and complex- 
conjugate matrix. Equation (3) holds always, since 

t r . ( C  h } - - { 0 '  h~=0, 
•3, h = 0 ,  (4) 

from (2), and 
1 .v-1 ~ .~ 

tr. (ChiF) -- t r . /~ -  ~ h~:=0 FhChCh~ i 

1 ~-1  
---- N-- ~ ~ Fh tr. {C h-hi} = Fhi , (5) 

h = 0  

from (1) and (4). For the sake of simplicity, we shall 
write tr. (ChiF) as ((~hi), hence 

<(~hi> = Fh~. (6) 
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2.3. Introduction of a unitary space 
Since N~ different C hi a r e  l inearly independent  with 

each other b y  the nature  of cyclic group (2), the 
selectiomoperators C hi introduced in 2.2 are also 
recognized as base vectors belonging to a Na-dimen- 
sional vector space. In  this vector space, let us intro- 
duce a 'metr ic '  representing the square of length of 
any  vector Q as follows. 

<IQI~> = < 0 ~ > ,  (7) 
where Q is expressed by a l inear combinat ion of the 
base vectors C h~ and ( . . . )  means tr. { . . . F }  like 
tha t  of equation (6). Expression (7) is always non- 
negative by  vir tue of (I), (II) and (III) given in 2-1. 
Thus we can construct a N3-dimensional un i ta ry  space 
U of which the base vectors are given by  N a l inearly 
independent  C hi and the metrical  dist inction is shown 
by (7). The scalar product  of any  two base vectors 
C h~ and Ch~ belonging to space U is now given by 

(ChiChi}. Using equation (6), it  follows tha t  

<ChiCh~>=~hi_h j  . (8) 

Equat ion  (8) corresponds to a metric tensor which was 
considered by  yon Eller (1955, 1960).~ 

2.4. Consideration of symmetry 
Let us consider the case where the factor group is 

expressed by  

{So -= E, Sx, . . . ,  S~ . . . .  , Sm-~}, E = ( I I 0 ) ,  

Sv=(Rv[tv),  p = 0 ,  1, . . . ,  m - 1  , (9) 

where Rv and tv indicate the rotat ional  and transla- 
t ional  parts  of the p th  operation, m being the order 
of group. We shall  summarize  some relations which 
can be applied to any  space group. 

(I) The following relations hold among the structure 
factors. 

-Fhi----FRphie--2nihitP, p = 0 ,  1, . . . ,  m--  1 . (10) 

(II) If  Sq = SvSr, we have the relation 

Rq=R.pRr, tq= tpRr+ t r  • (11) 

(III) Using (6) and (10), we obtain 

< CRphi e--2~ihit~p > = < CRph i> e -  2gihitp 

=FRp~ie-~h~=Fhi,  p=0,  1, . . . ,  m-- 1. (~t2) 

Hence, we can introduce m different selection- 
operators for the same structure factor Fh~ as follows. 

<CRphi~--2nihitP>=<ehi>=2~hi , p = 0 ,  1 , . . . ,  m--  1. (13) 

(IV) If  Sq=SvSr,  using (11) and (13), the scalar 
product of two base vectors 

CRphie 2~ihitp and CRqh/e2~ih/tq 

t The base vectors considered by yon Eller are normalized, 
which correspond exactly t o  Chi/g< 1 ) = Chi/_Fo½. 

is given by  

<CRphi--Rqhj e--2,'~i(hitp--h)~q) > 

= (~Rp(hi-~hj.) e--2,~(h~.--~hj)~ e2~hl~} 

= <Chi-Rrh]e2nih'itr> = Fhi  l~rh "e2"~ih'~r. 

Hence, for given p and q, we obtain 

<CRphi e--2n/hitpCRqh7 e2nih]tq> 

m-1 
= ~" ~RpRrRq 1 ' l<ChiCRvhJ e2~ih.itr> 

r~O 
m--1 

= ~ (~RpRrR'~ 1" lFhi-Rrhj  e2nihfl r, 
r~O 

where 
1, J ~ p R r ~ - i = l  , 

(~RpRrRql: 1 = O, RpRrRq 1 # 1 . 

(14) 

(]5)  

(16) 

2-5..Regular representation of a point group and its 
reduction 
Let P(Rr) be a regular representat ion for an  element  

Rr  of a point  group. Then the RvRq element  of the 
mat r ix  P(Rr) is given by  

P R pRq( Rr ) = (51¢ p R r l t ~  1,1 • ( 1 7 )  

P(Rr) can be t ransformed to an irreducible form by  
a un i ta ry  mat r ix  O. Namely  

l 
OP(Rr)O -1= .~+ n,,P~,(n~), (18) 

p=l  
with a relat ion 

/ 
Z n ~ . = m ,  (19) 

tt=l 

where ~S + means the direct sum of the matrices, 
P,(R~) being the ttth irreducible representat ion ob- 
ta ined from the reduction of the regular representat ion 
P(R~), n,  its dimensions and 1 the number  of classes. 

3. Derivat ion of a general  type  of inequal i t ies  

3.1. Unitary space U and inequalities 
Inequali t ies  can be taken as the expressions to 

represent the geometrical natures  of a un i ta ry  space 
U introduced in 2.3. The most characteristic expres- 
sion for the geometrical na ture  is a bi l inear  form 
which represents tha t  the square of length of any  
vector in space U mus t  be always non-nesat ive.  This 
s ta tement  expresses the characters of the un i ta ry  
space, as a necessary and sufficient condition. How- 
ever, we shall  note here tha t  this  s ta tement  comes 
from the character of U itself which does not  depend 
on the ways of choice of the base vectors. 

Let  us consider n base vectors Chi(i---- 1, 2, 3, . . . ,  n). 
Any  n-dimensional  vector Q which has components 
x hi with respect to these base vectors C hi is expressed 
by~ 

t zNote tha t  xhi is a contravar iant  component  where h i  
means a suffix. 
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Q = ~ C h i x  hi. (20) 
i=1 

The square of length of the vector Q must be 
non-negative ; tha t  is, 

n ~ n 

= ~ ~" Fhi__h/Xhi"xh: > O. (21) 
i=~ :=~ 

(21) is Karle & Hauptman 's  bilinear form. Let us 
consider n base vectors e r / ( i =  1, 2, . . . ,  n) defined by 

e~ - ]/Na ~ o  Ch~e--2=~h~ri/~' i = 1, 2, . . . ,  n .  (22) 

Any n-dimensional vector O which has components 
x ~ with respect to these new base vectors e r / i s  ex- 
pressed by 

Q = ~ e~x  r~ . (23) 
i=1 

Similarly, the square of length of the vector Q must 
be non-negative. 

<I012> : <l ~" er i x r i  2> = ~ ~ <~?rier]>xri,,xr, 
i=1 i=1 /=1  

- -  2~ er/lxr~l~ >_ 0, ~ (24) 
i=1 

where 

~ri 

~V--I 
= ~ ,  Fhk e2:~ihkr//N, i =  1, 2, . . . ,  n .  (25) 

hk=0 

(24) represents directly tha t  the electron densities 
are non-negative. 

Now, let T~ ( i=1,  2 , . . . ,  n) be a set of linearly 
independent n base vectors which are selected arbi- 
trarily in uni tary  space U. T~ has the following form. 

8--1 
T / = ~ C  hk, i = 1 , 2 , . . . , n ,  (26) 

k=0 

where y~ is an arbi t rary constant and s an integer 
(s >_ n). Similarly to (20), any vector Q is expressed by 

Q = .2~ T i x t  (27) 
i=1 

Consequently, we have 

= = <TiTj>x ~ x~ >__ O. (28) 
/=1 i= l  ]=1 

From the principal determinants of (28), we can 
obtain the inequalities of the following type. 

T u  T n  . . .  TI~, 
T21 T22 . . .  To.n" n' (29) . . . .  I > 0 '  = 1 , 2 , . . . , n ,  

Tn'i Tn'2 . . .  Tn' n' i 
. . . . . . . . . . . . . . . . .  

t See A p p e n d i x  I. 

where 
T~: =-- <TIT:>.  (30) 

The consequences (21), (24), (28) and (29) are the 
equivalent statements to each other representing the 
characters of the uni tary  space. 

Let {T/j} and {Fhk-ht } be the matrices belonging 
to the same subspace. Then the matrix {T/:} can be 
obtained by a uni tary  transformation from Karle & 
Hauptman 's  matrix {Fhk-hz}, if {y/k} is unitary. But  
{y/k} is not always necessary to be unitary. Moreover, 
{T/:} and {Fhk-hz } need not belong to the same sub- 
space. Accordingly, in some cases, it will not be easy 
to find {T~:} by a simple transformation from Karle 
& Hauptman 's  matrix.~ 

We can also express some of the characters of space 
U by utilizing other methods of geometrical considera- 
tions. In  fact, some of these have been considered by 
yon Eller (1955, 1960). (See Appendix I I  for a few of 
these examples.) In such a case, one might arrive at  
inequalities somewhat different in appearance. This 
comes from nothing but  the necessary consequences 
which arise from the characters of the uni tary space. 

(29) represents a general type of inequalities for the 
case of P1. 

3-2. General type of inequalities 
Introduction of symmetry. Let ( T ~ , . . . ,  T/p, . . . ,  T~) 

be a new set of the n base vectors which are derived 
by a symmetry  operation Sp--(Rvltv) from a set of 
n base vectors ( T I , . . . ,  T ~ , . . . ,  Tn). The base vec- 
tors T~ here have the following form. 

S--1 

k=0 
i = 1 ,  2, . . . ,  n, 
p = 0 , 1 ,  . . . , m - - 1 .  (31) 

Any vector Q corresponding to (27) is now given by 

Q ~ 2; p i (32) = T i Xp. 
i= l  p=O 

The square of length of the vector (32) must be 
non-negative; tha t  is, 

= ~ ,  P i 2  T i Xp 
i=l  p=O 

- ~ ' . X  -P q / °  J 
- <T~ Tj>x~x~ >__ o, ( 3 3 )  

i=1 ]=1 p=0 q=0 

which is a bilinear form corresponding to (28). 
.Reduction. Using (15), (17) and (31), we can trans- 

form <T/PT~> to 

t We shall note, however, that T/j relates to Fhk-h~ in 
the following way. 

s--1 s--i 
~l~tj = ,~ ~ ~ ik°~ j lFhk_h l  , i, j :  1, 2 . . . . .  n .  

k=0 l =0 
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s--1 s--1 
< T ~ T ~ >  = ~ .~'-}'ik%')'] < ~ R p h k e - - 2 n i h k t p C R q h l e 2 ~ r i h / t q >  

k = 0  / = 0  

m--1 s--1 s--1 

r = 0  k = 0 / = 0  

m--1 

---- 2 PR~R~(Rr)<T~T~>. (34) 
r = 0  

Therefore, (33) can be expressed as follows. 

n n m - 1  m - 1  m - 1  

i = 1  ./=1 p = 0  q = 0  r = 0  
~ r i ~ ] x <TiTI> %xq > O. (35) 

Using the m-dimensional column vectors 
- -  , - -  

x i =  x!, , i = 1 , 2  . . . .  , n ,  

I ~L-~I 
and introducing 

(36) 

X i = O x  ~, i = 1 , 2 ,  . . . , n ,  (37) 

by uni tary matr ix O given by (18), we can transform 
(35) to 

n m--1 

_~ 2~ (~,.2P(~)<~T~>.x~) 
i = l  ~=1 r = 0  

n n , _ ~ l  ( m--I  

@ X ~ O  ~ (38) i i = 1  ~=1 #- -1  t r = 0 - -  = 

The second one of (38) indicates a bilinear form 
reduced into the direct sum of different irreducible 
representations with respect to P(Rr) (see Appendix 
I I I  for a set of the base vectors by which the bilinear 
form becomes (38) directly in contrast to (33)). 

Inequalities. Putt ing 

m--1 

T(~) t , A R r )  - , --i] - - 2  , -  . . . , 1 ,  (39) 
r = 0  

it follows from (38) tha t  the hypermatrices having i j  
elements given by (39) must be non-negative. Hence 
we obtain 

princ. 
subdet. 

• . • -LI~ .| 

IT(") T~) T 00! 21 ' 2n [ 

/ 
>_ 0,/~=l, 2 . . . .  ,1, (40) 

which is a general type of inequalities applicable to 
any given space group• I t  should be noted tha t  
inequalities (40) characterized by terms of irreducible 
representations of a point group was derived as a 
necessary consequence of (33), which is a natural 
extention of (28) to any space group. 

3.3• Some comments 
Let us give here some comments which will be used 

later in the application of (39) and (40)• 
Elements T~). When a given point group is a 

commutative group, all of the irreducible representa- 
tions are one-dimensional. But, when a given point 
group is not commutative, some of the irreducible 
representations are not one-dimensional. In such cases, 
the corresponding T!~) becomes a matrix. In the case 
of P1, of course, we have 

s--1 

T~? = Ti j=  <~iTj>, T i -  T~ = _~/Chk. (41) 
k = 0  

In the case of P i  which has one-dimensional ir- 
reducible representations : 

P1 (/to) = 1, P1 (R1) = 1, 
for total ly symmetric representation, 

P2 (Ro) = 1, P9  (R1) = - 1, 
for anti-symmetric representation, (42) 

where Ro=  1 and R I = I  (the operation of inversion), 
we have 

1 

T!~)= Z PI(Rr)<TiT;> = <TiTj>+ <T2-T}>- T~ +), (43) 
r = 0  

I 

T~ 2)= ~ P2(Rr)<TiT;> : <TiTj>- <T~'T)>=- T!T) , (44) 
r = 0  

or, in a compact form, 

T!~)= <~Tj> + <~iT]>, (4~) 
where 

s-- t  ,~--I s--I 
Ti .~- k ,h~ ,;,i = ~'i C , _/ = _~)" 7~.CR~hz = _,)" ~,l.C-"l. (46) 

k = 0  / = 0  / = 0  

We shall show few other examples of T!~) in Ap- 
pendix IV. 

Inequalities of lower degree. Let 

P~(Rr) , /~=1,2 ,  . . . , t , ( t  < l )  

be one-dimensional irreducible representations. Since 
T~) (/~ = l, 2, . . . ,  t) is one-dimensional, we can easily 
obtain the following inequalities from the determinants 
of the first and second degrees of (40). 

rn--1 

Ti' {) >_ 0, or ~ P , , ( R r ) < ~ ' I T ] >  ~ O, /,  = 1, 2, . . . ,  t ,  
r = 0  

and (47) 

!T~) T~.~) = ~,(~)T(.) IT~)I~ ~ o (48) 
i" T(2/~ ) T(2~ ) ] ~ 1 1  2 2 -  - -  , 

o r  

m--1 2 

~,P~(Rr)<T1Tr2> , / ~ = l , 2 , . . . , t .  (49) 

In the case of T2--1 in (49), the inequalities except 
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the one for the case of totally symmetric representation 
are trivial equations.~ Therefore (49) becomes as 

1 (1) {~--~0 (T~ T~ >_ [(T~)[ 2. (50) 
m 

Similarly, in the case of Ta=l,  the inequality 
obtained from the determinants of the third degree 
of (40) becomes as 

[(l){r~=2(rFlT~) } -- m l ( T 1 ) ] 2 1  

( 1 )  [rn--1 _ r ] 

> ( l ) /~ . ,  v (T~T.~ - m  ~)(Te)': . (51) 
(-=0 

Let us consider the case where P~,(Rr) is not neces- 
sarily one-dimensional. Even in this case, we can 
derive a similar expression to (47) from the trace of 
a non-negative matrix T~) as follows. 

m-1 

r ~ 0  

where Z~,(R~) -- tr. Pg(R~) represents the so-called 
simple character. Combining (50) and (52), we obtain 

1 (1){r~=oZ~,(R~)(T~Tr ~ >_ ](T~)I26~ (53) m = 

4. Inequali t ies ~,iven by different authors  

4.1. Inequalities of lawer degree 
Okaya de Nitta. We shall use the totally symmetric 

representation (/~=1) of the linear inequalities (47) 
for the case of Pi. In this case, from (43), we have 

>_ o ,  (54) 
where 

s - - 1  s - - 1  

T~ = Z ~ c  h~, T~ = 2: ~ C  -h~, (h0 -- 0) .  (55) 
/c----0 k=0 

(a) Putting yO=l, ? ] =  _+m and otherwise y~=O, 
we obtain T ~ - - l + m C  hi and T ~ = I _ m C  -h~. Sub- 
stituting these in (54), we have 

T(~) = <(1 + ~ ( ~ )  (1 + ~Ch~)> + <(1 + ~(~1)  (1 + ~C-hl)> 
: (1 _ / ( ~ h l  q_ mChl +/2(~hlChl) 

+ (1 -b m e  hi ~- me -h~ +/2 (~hlC--hl )  

= (2 + me)Fo + meF2h~ +_. 4 m F ~  >_ 0 ,  (56) 

In  the  case of Te----I, all terms of T2r for different r 
(r-----0, 1 . . . . .  m- -1 )  equal with each other, and  are not  linearly 
independent .  Hence,  wi th  relat ion 

m - - 1  

r = 0  

(49) becomes trivial except ~u----1. 

or (2 +me)Fo÷meFehl >_ 4mlFhl I . (57) 

(b) Putting 7~=1, 712= +_m and otherwise ?~=0, 
we obtain from (54) and (55) that  

(1 + me)Fo + F2h I + / 2 _ F 2 h  2 --q-_ 2m(Fhl+h 2 + Fh l_h2  ) ~_ 0 , 

(hS) 
or in a form replaced by hi + h2 = kl and h i -  he = ke, 

(l+me)F0+Fkl+ke+meFkl_k2 >__ 2m]Fkl + Fk21. (59) 

(c) Putting ?°---r, y~----+_-p and 712---+ q and other- 
wise y~=0, we obtain from (54) and (55) that  

(2r~ + p2 + qe)F o + peFehl + qeFeh2 
+ 2pq(Fhl+he + Fhl_h2) >__ 4r[pFh~ + qFhe[ . (60) 

Harker & Kasper. We shall use quadratic inequal- 
ities (49) and (50) for the case of P~. T~)is given by 
(43) and (44), or by (45). 

(a) Putting 711= 1 and otherwise y~=0, and sub- 
stituting T(11) given by (43) in (50), we have 

Fo (Fo+ Fehl) >_ 2F ~  . (61) 

(b) Putting ?~=1, 712= Jr 1 and otherwise y~=0, 
and substituting T~11 ) given by (43) in (50), we can 
obtain 

1 _ _  _ _  F0 (F0 + ~-F2h 1 + :leFeh2 +_ F h l _ h  2 _+ F h l + h  2) > (Fh  1 + Fhu)2- 
(62) 

(c) Putting 7~= 1, 7 ~ :  1 and otherwise y l k : 7 ~ : 0 ,  
and substituting T ~+) (i, j = 1 2) given by (45) in (49) - - i ]  , 

we have 

(Fo+Fk,,ke)(Fo+Fk~_k2) "2_ (Fk~+ Fke) e, (63) 

in a form replaced by hi + h e :  kl and h i -  he-- ke. 
Gillis. At first sight, the inequalities found by 

Gillis do not seem to be derived easily from (40). 
However, we shall show some examples of deriving 
these from the present theory. Here we shall use 
quadratic inequalities (49) and (50) for the case of P~. 

(a) Putting 7o= l, 72= 1 and otherwise 7~ :0 ,  and 
substituting T~) given by (43) in (50), we have 

½-Fo (3F0 + 4Fh2 + Feb2) >-- (F0 + Fv,2) 2. (64) 

Putting he=2hl  and comparing (64) with (61), we 
have 

F~(3Fo+4Fehl + F4h~) > 8F~1. (65) 

(b) Putting 71°=1, ? l =  +1, ? 0 = l ,  7~=_+1 and 
otherwise ~,~= ?~=0, and substituting T!~)(i, j =  l, 2) 
given by (43) in the totally symmetric representation 
of (49), we have 

(3F0 _+ 4Fhl + Feh~) (3F0 _+ 4Fh2 + Fehe) 
1 > 4(F0 + ~Fh~_h2 + ½Fhl+h 2 _+ Fh 1 + Fhe)e. (66) 

Putting hi = kl + k2 and he = kl - ke, and comparing 
(66) with (62), we can obtain 



74 A GENERAL THEORY OF INEQUALITIES 

-F 3 (3Fo ± 4Fk~+k 2 -+-F2k1+2k2) (3Fo _ 4Fkl_k2 + .F2k~_2k2) 
> 4(Fk~ _ F 4 - k 2 ) .  (67)  

We shall derive inequalities for structure factors 
based on P~ using (49), however putt ing F h = F _  h. 
In  this case, T~)(i,  j = l ,  2) is given by (41). 

(c) Putt ing y~ = 1, 71 = 1, y0 = 1, y~ = 1 and other- 
wise 7~=7~=0,  and substituting T!~)in (49), we have 

4(Fo + Fh~_h2 ) (Fo + Fh3) 
>__ ( F h l - ' ~ ' F h 2 - ~ - . F h l _ h 3 " ~ - F h 2 _ h 3 )  2. (68) 

In the special case of h e = - h z  and h~=2hl ,  (68) 
becomes as 

4(Fo+F~h~) ~ _> (3Fh~+Fah~) e, (69) 
o r  

2(.Fo-{- F2h~ ) >_ 13Fhx+F3hl[ . (70) 

Karle & Hauptman.  Let us use inequality (51) for 
the case of P1. T!~) is given by (41). Putt ing y~= 1 
7~= 1 and otherwise ?~= 7~= 0, and substituting 
T~) in (51), we have 

2 o {~i-  l ~ l  } { ~ -  IFh~l ~} >--I~0~.~--h~--~F--h,l ~. (71) 

de Wolff & Bouman. Let us use (51) for the case of 
P~. T!~) is given by (43). Putt ing ?~= 1, y~= 1 and 
otherwise ?~=7~=0 ,  and substituting T!~) in (51), 
we have 

(~ '0  (-Fo -}- .F2hl)  - -  2F~,~} {Fo (Fo + .F2h2) - -  2F~,~} 
( F 0 ( / ~ h l _ h 2 - ~ - F h l + h 2 ) -  2~-~hl~h2} 2. (72)  

MacGillavry. We shall use inequality (50) for the 
case of any given space group. In this case, 

the case of any given space group. Putt ing ? ] :  1 

and otherwise 7~=0, we can obtain from (53) 

1 !__~m--1 } 
Fo [ r ~  0 ~ , , ( R r ) F o - R r ) h l e 2 n i h l t r  ~___ ]Fhl [2(~i , l .  ( 76 )  

m 

L6fgren. We shall use inequality (50) for the case 
of any given space group. 

Putt ing Y~= Y(hk), k =  0, 1, 2, . . . ,  s -  1, and sub- 
stituting (73) in (50), we have 

1 .,-i t s-i 
- Fo ±" 
m r=o (~=0 

+2Re _.Y ~Y ),*(he)~,(h~)Fh~._~h~e~h¢~ 
\ k > l = O  

> 2: ~,*(h~)Fh~ ,[~. (77) 
Ik=O i 

4.2. Inequalities of general form 
Karle & Hauptman. We shall use inequalities (40) 

for the case of P~; i.e. inequalities (29). Putt ing 
7~=5~ and substituting T~) given by (41) in  (29), 
we obtain 

"~hl- -hl  F h l - - h 2  ' ' '  Fhl - -hn"  

"Fh2--hl "Fh2--h2 " " " Fh2- -hn '  __.~ 0 ,  

F h n ' - - h  I A~hn'_h 2 . . .  Fhn'--hn" 

n ' = l ,  2,  . . . .  (78)  

Bouman. We shall use inequalities (40) for the case 
of Pi.  Putt ing ~,~'=(5~ and substituting T ~ )  (cor- 
responding t o / ~ =  1, 2) given by (45) in (40), we can 
obtain that  

"Fhl--hl  ----- "Fh l÷h l  "~hl--h2 

"~h2--hl ~- F h 2 + h l  "Fh2--h2 

A~'~hn'--hl ----- F h n ' + h l  ~-~hn'--h2 
m--1 s--I 

Til  ) = _~ (T~T~>, T~ = ~, ?IC hk, 
r=O k=O 

8--1 
T~ -- ~ 7~CR~h~'e2~ihkt~. (73) 

k=0 

(a) Putt ing 7~= 1 and otherwise 7~=0, and sub- 
stituting (73) in (50), we have 

1__ F0 ~ m--1 . 

(b) Putt ing 711=1, ~,~--Jr 1 and otherwise ~,~=0, 
and substituting (73) in (50), we have 

1 m--1 
- -  F 0  ~ (F(l_P~r)hl  e 2~ihltr -~- .F(l_Rr)h 2 e 2nih2tr 
m r=0 

+ 2Re(-Fh1-Rrh2e2nih2tr) } > ]Fhl +.Fh2[2. (75) 

Goedkoop (1950). We shall use inequality (53) for 

----- F h l + h  2 • . . .Fha_hn,  __-Fh l÷h  n' 

-4-Fh~+h 2 • • • -Fh2--hn' ! F h 2 + h  n" 

-- F h n ' + h 2  • • • F h n ' - - h  n" ! F h n ' + h  n' 

_>0, n ' = l , 2 ,  . . . .  

(79) 

Goedkoop (1952). We shall use inequalities (40) for 
the case of any given space group. 

Putt ing y~= ~', we can obtain the elements T~) 
from (39) as follows. 

m--1 

T~f) = fl_] ptt(Rr)Fhi_lCrh]e2~ihitr -- l~(u). [~= 1, 2, 1 " ~ i  ~ "" "~ " 

~=0 (80) 

From (40) with (80), we have 

princ. 

subdet. 

" "  " " " I n  

FC~) F(2~) v(,) 21 - • " • -~' 2n 
• , . . .  . 

> 0 ,  n = l ,  2, . . . , l .  

(81) 

which is a form in close relationship with tha t  of 
Goedkoop (1952), (Oda, Naya & Taguchi, 1961). 
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5. Conclusion 

We have derived a general type of inequalities (40). 
This theory shows tha t  (40) contains not only the 
' fundamental  form of inequalities' (81) given in our 
previous paper, but  also covers all the inequalities of 
other types so far found by different authors. One 
might arrive at  the same results from a different 
approach. However, we intended to show explicitly 
that  expression (40) can also be derived from a matrix 
of Karle & Hauptman 's  type, and tha t  the inequality 
relations to be imposed among structure factors can 
be reduced entirely to the geometrical characters of 
the uni tary space. 

In  conclusion, we shall note tha t  various inequalities 
can be derived using other irreducible representations, 
and we hope tha t  some useful inequalities will be 
derived from this theory for particular space group 
for practical purpose. The methods presented in this 
paper may also be applied to other fields of crystallo- 
graphy. 

A P P E N D I X  I 

The scalar product between two base vectors eri and 
e~ given by (22) becomes 

1 .v-i 2¢'--1 <ChkCh/> e 2~ihkri/'Y e -2=ihlr#~v <er~er/) = ~-~ .~ 27 
hk=0 h/=0 

1 N--1 ~V--1 
-~ -~-3 27 27 F ~2ni(hkri--hlr])#V (I-1) 

-/~ hk=0 h/=0 hk--hlr" 

Using the periodic condition for F~ (Taguchi & 
Naya, 1958) and remembering tha t  

_h'--i 
~ri = 27 A~hk e2:zihkri#r' (1-2) 

hk=O 
and 

1 ,V--I 
2~---- ~ ~ e2nihk(ri--~/)/N = (~rirj, (1-3) 

hk=O 

we can easily transform (I-1) to 

.V--1 1 N - - I  
. ~  F ,~2~i(hk--hl)ri/N • ~ ~ e2nihl(ri--U )/'v 

hk=O hk--hl~ 2V3 h/=O 
N--I 

= ~ Fhk_hle2ni(hk--hl)ri/Ndrirl -~ @ri(~riri • 
hk--h/= 0 

(1-4) 

A P P E N D I X  II 

For the sake of simplicity, we shall introduce an 
Euclidian space E as considered by yon Eller, so tha t  
all Fh become real. 

(I) Any normalized base vector is expressed by 

T, ( /) ,D,>=X, i =  1 2, . . . .  (II-1) D ~ -  (~T~>~ ' 

The scalar product of two normalized base vectors 
D~ and D~. gives the direction cosine between these 
two vectors. Obviously 

- 1  _< </)1D2> _< 1 .  ( I I -2 )  

(II) Let ~1~, 9~  and ~3t be the angles between any 
two of three normalized base vectors Dx, D2 and D3 
respectively. Namely, 

q~j= cos-~ <b~D¢>, i # j =  1, 2, 3 .  (II-3) 

~12, ~28 and F81 represent also the three sides of a 
spherical triangle. Accordingly, it follows 

0 _< q~12+ ~2a + ~81 _< 23z, 
q912 _< ~2~ + ~3t, 
~23 < (ps1 + ~12 , 
~ -< 9,~+ ~ ,  (11-4) 

similarly to yon Eller. 
(III) Now let us consider the square of volume of 

a n-dimensional parallel-polyhedron" 

1 <I)~D~> . . .  </)~Dn> 

</)2Dx> 1 . . .  </)2D~} , n = l , 2 ,  . . . ,  

(/)nD~> <DnD2> . . .  1 (11-5) 

which is constructed by n base vectors D~, D2, . . . ,  D. .  
By simple geometrical considerations, it follows tha t  
(II-5) is not only more than zero and less than uni ty  
for each degree n of the determinants, but  also they 
decrease as the degree n increases. Namely, 

I 1 (b~D2> > ,  1 </)~D2> <b~Da> 
1 > (/)2D~> 1 - </)eDI> 1 </)~Da> > . . .  

' </)aD~> </)#De> I 

1 . . .  

. . .  > (/)2D~> 1 . . .  (/)2Dn> > _ . . . > 0 .  

<b~D~> </)nD~> . . .  ~ (II-6) 

A P P E N D I X  III 

We shall use the following base vectors which are 
expressed by a linear combination of T~. 

,~-1 i = 1, 2, . . . ,  
T~')'~. , = I/(nt,/m ) 2_: [Pt,(Rp)]~¢T~, 

v=0 # = 1 ,  2, . . . , l ,  

(111-1) 

where the coefficients [P~(Rp)L~ represent the c¢fl 
element of the # th  irreducible representation for the 
elements Rv of the point group. The scalar product 
of two base vectors T!'):~ and ~r(v).~ becomes to be 

= 

m--1 m--1 
]/(n,n~/m 2) Z 27 [P~,(Rp)]%[P~(Rq)]ra<~'PT~> . ( I I I -2)  

p=0 q=0 

Using (34), 
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m--1 ( n r ) 

~=o (111-3) 

and using the orthogonality relation for the irreducible 
representation, 

m--1 
* = (m/n~,) 8~,~,8,r6/~ (111-4) 

p=O 

Substituting (Il i-3) and (III-4) in (III-2), we can 
obtain that  

m--1 

(111-5) 

Namely, for each case of given i and j,  the scalar 
products of the base vectors shown by (III-1) just 
equal to the f15 element of (39) when # = v and a = },, 
and equal to zero when # 4  v or a #  7, (i.e. the base 
vectors are orthogonal with each other). In order to 
derive his inequalities, Goedkoop (1950) used a rela- 
tion similar to this for the case of i = j  of (III-2). 
But, at first sight, the necessity of the introduction of 
the base vectors (III-1) characterized by terms of the 
irreducible representation of the point group seems to 
be less obvious than those shown in 3.2. 

A P P E N D I X  IV 

Example 1. P2~/c 
The factor group is expressed by 

S o = ( R o } t o ) ,  S ~ = ( R l l t ~ ) ,  S~ ,=(R~It2) ,  S ~ = ( R 3 l t ~ ) ,  

where 
(IV-l)  

(IV-2) R0 = 1, R1 = I,  R2 = U,  R8 = 1 U ,  
and /°/ to = t l  = 0, t2 = t3 = ½ • (IV-3) 

½ 

I represents the operation of inversion with respect 
to the origin and U the operation of two-fold rotation 
with respect to the b-axis. The point group: 

(Ro, R1, R2, R3)= (1, I, U, I U )  ( I V - 4 )  

is a commutative group of the order four and its 
irreducible representations which are one-dimensional 
are given by 

P ~ ( R o ) = P I ( R 1 ) = P I ( R 2 ) = P ~ ( R 3 ) =  1 , 

P2(Ro)=P~,(R1)= 1, Pz(R2)=P2(R3)= - 1, 
Ps(Ro)=Ps(R2)= 1, P3(Rs)=Ps(R~)= -- 1 , 

P4(Ro)--P4(/{3)= 1, P4(RI)=P4(Re)= - 1. (IV-5) 

Using (IV-2), (IV-3) and (IV-5), we can easily 
obtain T!~) (tt = 1, 2, 3, 4) from (39). 

Example 2. P42 
The point group is expressed by 

(R0, R1, R2, B3, R4, Rs, R6, RT) 
--(1, U4, U~, U~, U2, U2U4, U2U~, U2U'~), (IV-6) 

where Ua represents the four-fold rotation with respect 
to the c-axis and U2 the two-fold rotation with respect 
to the b-axis. The non-commutative group (IV-6) of 
order eight has the following five classes. 

(1), (U~4), (Ua, U~), (U2, U2U]), (U2L~, U.2U~). 
(1v-7) 

Hence, the five different irreducible representations 
are obtained. 

The relation (19) is expressed by 

12+ 12+ 12+ 12+22=8.  (IV-8) 

Accordingly, we have the four different irreducible 
representations of one-dimension and one irreducible 
representation of two-dimensions. Each of them is 
given as follows. 

P1 (Ro) = P1 (R1) = P1 ( R 2 ) =  P1 (Rs)  

=P1 (R4) =P1 (Rs) =P1 (R6) = P i  (RT) = 1 , 
P2 (Ro) = P2 (R1) = P2 (R2) = P2 (R3) -~ 1, 

P2 (R4) = P2 (R5) -- P2 (R6) = P2  (R7) = - 1 , 

P3 (Ro) =P8 (R2) =P3 (R4) - - P 3  (R6) --= ], 
P3 (R1) = P3  (R3) = P3  (Rs)  = P3  (RT) = - 1 , 

P4(Ro)=Pa(R2)=Pa(Rs)=Pa(RT)= 1, 
P4(R1)=P4(Rs)=P4(II4)=P4(R6)= - 1 ,  

°1, p (R1) = [i °i Ps(Ro)= 0 1 [0 - i  ' 

I-1 01 [-, 07 
P s ( R 2 ) = .  0 - - 1 ] '  P s ( R s ) =  0 i ' 

P5(R4) = [~ 10], I'5(R5)= [0i - ~ ] '  

P s ( R 6 ) = [  0 -10] P s ( R T ) = [  0 i i 
- - 1  ' - i  0 ."  

(lV-9) 

Using (IV-6) and (IV-9), we can casily obtain 
T!!j ) (# = 1, 2, 3, 4, 5) from (39). 

In conclusion, the author should like to express his 
hearty thanks to the late Dr I. Taguchi who drew the 
author's attention to this fascinating problem and 
gave him valuable suggestions, and to Prof. I. Nitta, 
T. Watanabe and K. Husimi for their guidance and 
criticism, and to Prof. T. 0da for his kind discussion. 

R e f e r e n c e s  

]3OUMAN, J. (1956). Acta Cryst. 9, 777. 
ELLER, G. YON (1955). Acta Cryst. 8, 641. 
ELLER, G. YON (1960). Acta Cryst. 13, 628. 



S H I G E O  N A Y A  77 

GILT,IS, J .  (1948). Acta Cryst. 1, 76. 
GOEDKOOP, J .  A. (1950). Acta Cryst. 3, 374. 
GOEDKOOP, J.  A. (1952). Theoretical Aspects of X-ray 

Crystal Structure Analysis, p. 89. Thesis, Amsterdam. 
H~KER,  D. & KASPER, J .  S. (1948). Acta Cryst. 1, 70. 
KA~LE, J .  & HAUPTMAN, H. (1950). Acta Cryst. 3, 181. 
L6FGRE~, T. (1960). Acta Cryst. 13, 429. 

]VIAcGILLAVRY, C. H. (1950). Acta Cryst. 3, 214. 
OD_~, T. & NAYA, S. • TAGUCHI, I. (1961). Acta Cryst. 

14, 456. 
OKAYA, Y. & NITTA, I. (1952). Acta Cryst. 5, 564. 
TAGUCHI, I. & :NAYA, S. (1958). Acta Cryst. l l ,  543. 
WOLFF, P. M. DE & BOUMA~, J.  (1954). Acta Cryst. 7, 

328. 

Acta Cryst. (1962). 15, 77 

The Crystal Structure of Sodium Bicarbonate 

BY RONALD L. SASS AND RONALD F. SCHEUERMAN 

Department of Chemistry, Rice University, Houston,, Texas, U.S.A. 

(Received 10 April 1961) 

The atomic parameters in sodium bicarbonate are redetermined. The resulting bicarbonate ion 
structure differs significantly from that  found in other salts. The bicarbonate ion was found to have 
C~v symmetry (excluding the hydrogen atom), with C-O bond distances equal to 1.346, 1.264 and 
1.263 A. The hydrogen bond distance between adjacent bicarbonate ions is 2.595 A. These dimen- 
sions are compared with those in related compounds. 

Introduct ion 

The bicarbonate  salts are a ra ther  interesting series 
of compounds which i l lustrate the effects of crystal  
packing on the internal  s t ructure  of covalently bonded 
molecules. Three such salts which have  been studied 
by X - r a y  diffraction are potass ium bicarbonate  (Nitta,  
Tomiie & Hoo Koe, 1952), sodium sesquicarbonate 
(Brown, Peiser & Turner-Jones,  1949) and sodium 
bicarbonate (Zachariasen, 1933). These systems each 
crystallize by  utilizing a different hydrogen bond- 
ing scheme and show marked  differences in the  car- 
bon-oxygen lengths of the  anion. The solution of the 
s t ructure  of sodium bicarbonate  was obtained, how- 
ever, by using the  assumpt ion t h a t  p lanar  t r igonal  
carbonate  groups exist in the  cyrstal  with all carbon- 
oxygen distances equal to 1.27 /~. This assumpt ion 
was not  valid and only an approx imate ly  correct 
s t ructure  resulted. I t  is the object of the work re- 
por ted  in this paper  to collect new diffraction da t a  
and  to reexamine the atomic paramete rs  of this 
s tructure.  

E x p e r i m e n t a l  

Small needle-like crystals  of sodium bicarbonate  
were obtained by  slow evaporat ion of the aqueous 
solution in an  a tmosphere  of carbon dioxide. The 
result ing crystals were mounted  in the  usual manner  
with the axis of ro ta t ion  corresponding to the needle 
axis. Several crystals had  to be examined before one 
was found which did not  exhibit  twinning. The dimen- 
sions of this crystal  were approx imate ly  0.1 ram. in 
d iameter  × 2 ram. 

Oscillation and rota t ion photographs  showed the 
Laue s y m m e t r y  to be C2h-2/m. Systemat ic  absences 

led to the  space group assignment  of C~h-P21/c, in 
agreement  with Zachariasen (in his paper  Zachariasen 
used the  related unit  cell having s y m m e t r y  C~h-P21/n). 
The unit  cell dimensions obtained,  compared with 
those of Zachariasen,  are shown below. 

This invest igat ion 
a = 3-51 _+ 0-01 A 
b = 9-71 _+ 0.01 
c = 8.05 + 0.01 

 =111o51 , 
a : b" c = 0.361" 1 : 0.829 

Zachariasen (P21/c) 
a = 3.53 + 0.03 A 
b = 9.70 Jr 0.04 
c = 8.11 _+ 0.04 

 =112 o 25 '  
a:b:c--0.364:1 : 0.836 

The above axial ratios m a y  be compared to the values 
of a:  b : c = 0.3582 : 1:0.8253 determined optically by  
Groth (1908). Assuming four molecules per  uni t  cell, 
the  calculated densi ty  is 2.19 g.cm. -8, compared to 
the  exper imental  densi ty  of 2.22 g.cm.-3 reported by  
Groth (1908) and 2.20 g.cm. -3 listed in the In ternat io-  
nal Critical Tables (1926). 

Multiple film Weissenberg photographs  of the  
h = 0 ,  1, and  2 layers  were recorded using C u K s  
radiat ion.  The intensities of the  various reflections 
were es t imated  visually in the  usual  manner  w i t h  
the aid of an intensi ty  strip. Correlation of the inten- 
sities of the various sets of film was made  by compari- 
son to a photograph  which contained fifteen minute  
exposures of a twenty-f ive  degree port ion of each 
layer ;  absorpt ion was neglected. 

T r e a t m e n t  of data 

A Fourier  projection down the a axis was calculated 
using the  magni tudes  of the s t ruc ture  factors ob- 
ta ined from our intensi ty  da t a  and signs based on 


