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A General Theory of Inequalities Based on a Matrix of
Karle & Hauptman’s Type
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A general theory of inequalities based on a matrix of Karle & Hauptman’s type is given, which is
formulated by a somewhat different method from that given in our previous paper (Oda, Naya &
Taguchi, 1961). It is shown that inequalities so far reported by different authors can be easily

derived from the present theory.

1. Introduction

Since Harker & XKasper (1948) first derived their
inequalities to be imposed among structure factors,
this problem has been treated by a number of authors;
i.e. Gillis (1948), MacGillavry (1950), Karle & Haupt-
man (1950), Goedkoop (1950, 1952), Okaya & Nitta
(1952), de Wolff & Bouman (1954), von Eller (1955,
1960), Bouman (1956) and Lofgren (1960), ete.

In the two papers reported by the present author
and others (Taguchi & Naya, 1958; Oda, Naya &
Taguchi, 1961), we derived a non-negative matrix of
Karle & Hauptman’s type which was based upon a
matrix-representation of Fourier series as follows:

1 ¥-1

—_ h
F = 5 2 FuCh, M

where CP expresses a direct product of three matrices
Cr, Ct and C¢,

Ct=C'xCtxC!, h,k 1=0,1,2,...,N-1,

o | @)

C is a regular representation of a cyclic group of
order N, with N large. Starting from expression (1)
and reducing F by symmetry based on a matrix-
theoretical treatment, we obtained a general form of
inequalities which is in harmony with that of Goed-
koop (1952). This corresponds to a generalization of
the method given by Bouman (1956) for the case of
P;, and gives us a ‘fundamental form of inequalities’
applicable to any given space group. However, some
of the inequalities reported by different authors could
not be derived by this method.

In the present paper, we shall show a more gener-
alized theory of inequalities based on a matrix of
Karle & Hauptman’s type by a somewhat different
method from that given in our previous paper. First,

we shall utilize the geometrical considerations to derive
inequalities involving the structure factors, as shown
by von Eller (1955, 1960). The results obtained by the
present method will not only give the fundamental
form of inequalities reported by the author and others
in the previous paper, but also will cover inequalities
of other types found by different authors.

2. Mathematical preliminary
2-1. Properties of non-negative matrix

Let us note that any non-negative matrix has the
following properties.

(I) The trace of any non-negative matrix is always
non-negative.

(IT) The product of any two non-negative matrices
is also non-negative, if they can be diagonalized by
a same transformation.

(II1) The product of any matrix and its transposed
and complex-conjugate is always non-negative.

2-2. Selection-operator for the structure factor

We shall introduce a selection-operator C™ which
picks up a structure factor Fy,, from (1) by the follow-
ing operation.

tr. {CMF}=Fy,, CP=C-", (3)

where symbol ~ stands for a transposed and complex-
conjugate matrix. Equation (3) holds always, since

0, h
tr. {C") = {1\;3’ hig: )

from (2), and
- N—-1 -~
tr. {CPF} = tr. {i > FhChChi}
N3y—o
1 ¥
-z Z 'l"h tr. {Chvhi} = th. s (5)

N3poo

from (1) and (4). For the sake of simplicity, we shall
write tr. {C%F} as (C®), hence

(Chiy=Fy, . (6)
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2-3. Introduction of a unitary space

Since N3 different C™ are linearly independent with
each other by the nature of cyclic group (2), the
selection-operators €% introduced in 2:2 are also
recognized as base vectors belonging to a N3-dimen-
sional vector space. In this vector space, let us intro-
duce a ‘metric’ representing the square of length of
any vector Q as follows.

Q1) = (00, ()

where Q is expressed by a linear combination of the
base vectors C™ and (...) means tr.{...F} like
that of equation (6). Expression (7) is always non-
negative by virtue of (I), (II) and (III) given in 2-1.
Thus we can construct a N3-dimensional unitary space
U of which the base vectors are given by N3 linearly
independent C® and the metrical distinction is shown
by (7). The scalar product of any two base vectors
C"™ and CM belonging to space U is now given by

(C™C™). Using equation (6), it follows that
(CHCYiy=Fy, _y, - (8)

Equation (8) corresponds to a metric tensor which was
considered by von Eller (1955, 1960).1

2-4. Consideration of symmetry

Let us consider the case where the factor group is
expressed by

{SOEE, Sl, ...,Sp, ...,Sm—l}, E=(1|0),
SP"_"(RP[tP): p=07 L...,m—1 > (9)

where R, and t, indicate the rotational and transla-
tional parts of the pth operation, m being the order
of group. We shall summarize some relations which
can be applied to any space group.

(I) The following relations hold among the structure
factors.

Fp;=Frp,e %, p=0,1,...,m—1. (10)
(I1) If S8;=8,S,, we have the relation
Rq=RpRr, tq= tpRr+ tr N (11)

(III) Using (6) and (10), we obtain
(CRphig—2nibitpy _ ( (Ryhy g—2aibity
=FRphie—2nihitp=Fhi, p=0,1,...,m—1. (12)

Hence, we can introduce m different selection-
operators for the same structure factor Fy, as follows.

(CBphig=2mibityy, — (CPiy=Fy. . p=0,1,...,m—1. (13)

(IV) If S;=85S;, using (11) and (13), the scalar
product of two base vectors

CEBphig2ribity gnd (CRohje?mihity

1 The base vectors considered by von Eller are normalized,
which correspond exactly to Chi/y{1)=Chi/Fy}.

is given by
<[jRphi-th,~ o—2ni(hitp—h ﬂq_))
= (CRybi~Rrh)) g—2nithi—Rrb)ty 2wibytr

- <éhi-R¢hj e2ritey — Py oy €270, (14)

Hence, for given p and ¢, we obtain

< CRph; e"?’!‘ihitpCth] e2nih ]'tq>

m—1 ~

=3 éRpR,-Rq_l,l <Cthth7 e?mhjtr>
r=0
m—1

_ ¥ - 2nih;!

= —)6 Or,r,R7 1 Fn;Rn; e P,
r=

(15)
where
I, R,RR =1
4 Ag=47 P T4 ’ 16
Ry, R 1 {0’ RRR+1. (16)
2-5. Regular representation of a point group and its
reduction

Let P(R/) be a regular representation for an element
R; of a point group. Then the R,R, element of the
matrix P(R;) is given by

(17)

P(R;) can be transformed to an irreducible form by
a unitary matrix O. Namely

Pr,r,(R:)=0r,rr7,1 -

OP(R,)01= Zl+n,LP,,(R,) ; (18)
u=1

with a relation

b~

nl =

w=m,

(19)

1

”

where 3+ means the direct sum of the matrices,
P,(R,) being the uth irreducible representation ob-
tained from the reduction of the regular representation
P(R:), n, its dimensions and [ the number of classes.

3. Derivation of a general type of inequalities
3-1. Unitary space U and inequalities

Inequalities can be taken as the expressions to
represent the geometrical natures of a unitary space
U introduced in 2-3. The most characteristic expres-
sion for the geometrical nature is a bilinear form
which represents that the square of length of any
vector in space U must be always non-negative. This
statement expresses the characters of the unitary
space, as a necessary and sufficient condition. How-
ever, we shall note here that this statement comes
from the character of U itself which does not depend
on the ways of choice of the base vectors.

Let us consider n base vectors C¥(:1=1,2,3, ..., n).
Any n-dimensional vector Q@ which has components
a™ with respect to these base vectors C™ is expressed

byt

t Note that zM is a contravariant component where h;
means a suffix.
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n
Q = 3 Chighi,

t=1

(20)

The square of length of the vector Q@ must be
non-negative ; that is,
2

QP = (| = Cmiat

>= _,;' Zn‘ (CPiCPy gPi* b
i=1j=1

=3 3 Fpp@™ 2 2 0. (21)
i=1j=1
(21) is Karle & Hauptman’s bilinear form. Let us

consider 7 base vectors e, (i=1,2, ..., n) defined by

] ¥= Lo
VIVEth.__oChke—mmm’ i=1,2, ...,n. (22)

e, =

Any n-dimensional vector @ which has components
2™ with respect to these new base vectors e, is ex-
pressed by

sy

Q=Zeati. (23)

i=

-

Similarly, the square of length of the vector @ must
be non-negative.

2> _ é é‘"(éﬁe,-/>xri#xri

i=1j=1

QR = (| 3 ear

n
= onl2"2 20,1 (24)
i=1
where
A"_l . -
Or; = 3 Fy e mnidh i=1,2,...,n. (25)
hp=0

(24) represents directly that the electron densities
are non-negative.

Now, let T;(i=1,2,...,n) be a set of linearly
independent n base vectors which are selected arbi-
trarily in unitary space U. T; has the following form.

s—1

Ti=2'yfchk, i:l)2’°"’na (26)
k=0

where y¥ is an arbitrary constant and s an integer
(s = n). Similarly to (20), any vector Q is expressed by

=1

27)

Consequently, we have

QP = (| 2 Tuar

V=3 S (TTyaai = 0. (28)
i=1j=1

From the principal determinants of (28), we can
obtain the inequalities of the following type.

T T T1n |
| Tor T Tan | >0, n'=1,2, yn, (29)
. Tw1 Tyo ... Tn’n’i

+ See Appendix I.

wh -
ere Ty = (T:T)) .

The consequences (21), (24), (28) and (29) are the
equivalent statements to each other representing the
characters of the unitary space.

Let {T} and {Fp,-n,} be the matrices belonging
to the same subspace. Then the matrix {T;} can be
obtained by a unitary transformation from Karle &
Hauptman’s matrix {Fy,-p}, if {y¥} is unitary. But
{y%} is not always necessary to be unitary. Moreover,
{T:;} and {Fy,-p,} need not belong to the same sub-
space. Accordingly, in some cases, it will not be easy
to find {T';} by a simple transformation from Karle
& Hauptman’s matrix.T

We can also express some of the characters of space
U by utilizing other methods of geometrical considera-
tions. In fact, some of these have been considered by
von Eller (1955, 1960). (See Appendix II for a few of
these examples.) In such a case, one might arrive at
inequalities somewhat different in appearance. This
comes from nothing but the necessary consequences
which arise from the characters of the unitary space.

(29) represents a general type of inequalities for the
case of Pi.

(30)

3-2. General type of inequalities

Introduction of symmetry. Let (T%,...,T%, ..., TE)
be a new set of the n base vectors which are derived
by a symmetry operation Sp=(Rp|ty) from a set of
n base vectors (T1, ..., T, ..., Tn). The base vec-
tors T? here have the following form.

s—1
k i 0 __
Tf — 2 yh CRphkemnbktp’ Tz = Tt,
k=0 X
1=1,2,...,n,

p=0,1,...,m=1. (31)

Any vector Q corresponding to (27) is now given by

n m—1 A
Q=23 3T

i=1p=0

(32)

The square of length of the vector (32) must be
non-negative ; that is,
)
m—1 m—1

33 I (e 2 0,

n
i=1 j=1p=0g=0

n m—1

Qe =(| 2 X 11,

{33)

which is a bilinear form corresponding to (28).
Reduction. Using (15), (17) and (31), we can trans-

form (f‘fT?) to

+ We shall note, however, that T relates to Fhy_n; in
the following way.
s—1 s—1
Ty=2 Zy*ylFPru_ny 4,5=12,...,n.
k=0.=0
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s—1 s—1

<T'qu> > Zyk* l<CRphke—2mthpCthzezmll[tq>
k=0 =0

m—1 s—1 s—1

=3 Orrrp 1 2 Z yE YL (ChrCBrietnibytr,
r=0 k=01=0

m—1 -~
Therefore, (33) can be expressed as follows.
n n m—1 m—1m—
9 =3 33 3 PR,,RQ(R,)
i=1 j=1 p=0 ¢=0 r=0
X (T Tiyalal > 0. (35)
Using the m-dimensional column vectors
rai T
xXi=|a |, i=1,2,...,n, (36)
2t
and introducing
Xi=0xi, 1=1,2,...,n, (37)

by unitary matrix O given by (18), we can transform
(35) to

n n m—1 -
3 3 (i 3 PR (T, TSy x)
t=17j=1 r=0
[ ! m—1
=23 X (Xi Z+np{2 PR, <T~T§>} -Xi)=>0. (38)
t=1j=1 pu=1 0

The second one of (38) indicates a bilinear form
reduced into the direct sum of different irreducible
representations with respect to P(R;) (see Appendix
IIT for a set of the base vectors by which the bilinear
form becomes (38) directly in contrast to (33)).

Inequalities. Putting

m—1 -
TW= 3 P,R)(T. T}, p=1,2,...,1,

r=0

(39)

it follows from (38) that the hypermatrices having ij
elements given by (39) must be non-negative. Hence
we obtain

[T8 TE ... T

i (1) (1) (1)
T e Y R A

LT 1Y ... T

which is a general type of inequalities applicable to
any given space group. It should be noted that
inequalities (40) characterized by terms of irreducible
representations of a point group was derived as a
necessary consequence of (33), which is a natural
extention of (28) to any space group.

3. Some comments

Let us give here some comments which will be used
later in the application of (39) and (40).

Elements T®. When a given point group is a
commutative group, all of the irreducible representa-
tions are one-dimensional. But, when a given point
group is not commutative, some of the irreducible
representations are not one-dimensional. In such cases,
the corresponding T¢ becomes a matrix. In the case
of P, of course, we have

TP =T, = (T Ty, T,=T; = 5‘ y‘C“‘ (41)

In the case of P; which has one-dimensional ir-

reducible representations:

P1(Ro)=1, P1(Ry)=1,

for totally symmetric representation,
P:(Ro)=1, Py(Ry)=—

for anti-symmetric representation, (42)

where Ro=1 and R;=1
we have

{the operation of inversion),

1 s
Tg): f‘,‘Pl (R T, T}y = (T T7)+(T T1> Tﬁ;f’, (43)

TP= 3 Py(R,) (TT7) = (R~ (A =T, (19

or, in a compact form,
T = (TT)y + (T;T}) (45)

where
s—1

=1 s—1
=3 yiC™, T} = = YiCF = 39 C. (46)
k=0 1=0 =0

We shall show few other examples of T{¥ in Ap-
pendix IV,
Inequalities of lower degree. Let

P,(R,), p=1,2, ...t (t<])

be one-dimensional irreducible representations. Since
T (u=1,2, ...,1t) is one-dimensional, we can easily
obtain the followmg inequalities from the determinants
of the first and second degrees of (40).

m—1 -
TH 20, or TP, (R)T1T) =0, pu=1,2

and = (47)
W T
‘T(‘,i, Ty = TRTE-1TRE =0, s
or
m—1 1 ~
{Zr.m) @l ZP,m) (1)
m—1 t 2
(R)(TLTY |, u=1,2,...,t. (49)

In the case of To=1 in (49), the inequalities except
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the one for the case of totally symmetric representation
are trivial equations.t Therefore (49) becomes as

m—1
SO{E @l oE 60)
Similarly, in the case of Ts=1, the inequality
obtained from the determinants of the third degree
of (40) becomes as

(w{= <T1Ti>}~ml<T1>.I2]
< [ Z A} - micror]

- i2
|<1>{ <T,T;>} —m(T(Ty . (51)
Let us consider the case where P,(R,) is not neces-
sarily one-dimensional. Even in this case, we can
derive a similar expression to (47) from the trace of
a non-negative matrix T# as follows.

-1 -
tr. T4 = 3 R)CET =0, (B2

-0
where y,(R,) = tr. P,(R,) represents the so-called
simple character. Combining (50) and (52), we obtain

LS 1 RYETD) > KIS, (59)

4. Inequalities given by different authors

4-1. Inequalities of lower degree

Okaya & Nitta. We shall use the totally symmetric
representation (u=1) of the linear inequalities (47)

for the case of P;. In this case, from (43), we have
T = (T T:)+{T T} > 0, (54)
where
s—1 s—1
T, = 3 y{C™, Ti = 3 y{C™", (hy=0). (55)
k=0 k=0

(@) Putting 9i=
we obtain Ti=1+mCM and Ti=1+mC™M,
stituting these in (54), we have

I, '}’}= +m and otherwise y’l‘s=l()),
ub-

T = (1 £mC™) (1 £ mC™)y+ (1 £ mC™) (1£ mC))
= {1 £mC™ + mC™ 4 m2CM1CP)
+ 1+ mC™ + mC— 4 m2 6™y

= (24 m2)Fo+m2Fyp +4mFy >0, (56)

1 In the case of T,=1, all terms of Ty’ for different r
(r=0,1, ..., m—1) equal with each other, and are not linearly
independent. Hence, with relation

m—1

2 P,Ry) = mdu ,
r=0

(49) becomes trivial except u=1.

or

(2 +m2)Fo+m2Fyy, > 4m|Fy | . (57)

(b) Putting yi=1, y}=+m and otherwise y{=0,
we obtain from (54) and (55) that

(14+m2)Fo+ Fop, +m2Fop, 2 2m(Fpyyny+ Fyn,) 20,
(58)
or in a form replaced by h;+hs=Kk; and h;—ha=Kko,

(14 m2)Fo+ Fi, sy +m2Fy i, = 2m|Fy + Fi| . (59)

(¢) Putting y?=r, y1= +p and p?= + ¢ and other-
wise y¥=0, we obtain from (54) and (55) that

(2724 p2+¢?) Fo+ p2Fop, + ¢ F oy,
+2p9(Fh1+h2+Fh1——h2) = 4“th1+th2[ . (60)

Harker & Kasper. We shall use quadratic inequal-
ities (49) and (50) for the case of P;. T is given by
(43) and (44), or by (45).

(a) Putting yl—l and otherwise /=0, and sub-
stituting T given by (43) in (50), we have

F()(F()—I-thl) ZQFhl' (61)

(b) Putting y1=1, yi=+1 and otherwise yi=0,
and substituting T¢Y given by (43) in (50), we can
obtain

Fo(Fo+3Fon, + 3Fon, + Fry_nyt Friyyng) = (Fy+ Frp)®

(62)

(c) Putting y1=1, y3=1 and otherwise y{=y§=0,
and substituting T (4, j=1, 2) given by (45) in (49),
we have

(Fot Fy, . y,)(Fot Fy k) = (Fy, 2 Fy,))?,  (63)
in a form replaced by hi+ha=k; and hy—he=Kka.
(illis. At first sight, the inequalities found by
Gillis do not seem to be derived easily from (40).
However, we shall show some examples of deriving
these from the present theory. Here we shall use
quadratic 1nequa11t1es (49) and (50) for the case of Ps.
(@) Putting yl—l y2=1 and otherwise y¥=0, and
substituting T given by (43) in (50), we have

3Fo(BFo+4Fy,+ Fop,) = (Fo+ Fy,)2. (64)

Putting ha=2h; and comparing (64) with (61), we
have

F3(3Fo+4F sy + Fyp)) > 8Fh, (65)

(b) Putting =1, yl=+1, =1, yi=+1 and
otherwise y%¥=9%=0, and substltutlng TV, j=1,2)
given by (43) in the totally symmetric represen’cation
of (49), we have

(8Fo+4F 4 Fop,) (BFo+ 4F p,+ Fap,)

= 4(F0+%Fh1—h2+%Fh1+h2iFh1 ith)z‘ (66)

Putting h; =k; + ke and he=k; — ks, and comparing
(66) with (62), we can obtain
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F3(8Fo+ 4F g, yy+ Fox,oxy) (BFo + 4Fy, _yp+ Fape_oy,)
> 4(Fyy + Py (67)

We shall derive inequalities for structure factors
based on P using (49), however putting Fy=F_,.
In this case, T (7, g_l 2) is given by (41).

(c) Puttlng yl—l yi=1, y3=1, y3=1 and other-
wise yf=5=0, and substituting T} in (49), we have

4(Fo+ Fy,_p,) (Fo+ Fy,)

> (Fpy+Foy+Fyy ng+Fryy_pg)2  (68)

In the special case of he= —h; and h3=2h,, (68)
becomes as
4(Fo+Fap,)? = (8Fn,+ Fap,)?, (69)
or

2(Fo+ Fop,) = [3Fp,+ Fapy (70)

Karle & Hauptman Let us use inequality (51) for
the case of Pi. T is glven by (41). Putting yi=1
y2=1 and otherw1se y¥=9%=0, and substituting
T in (51), we have

{F%_ |Fh1|2} {F“(:)_ thzlz} = IFthl—hz—Fth—hzlz'

de Wolff & Bouman. Let us use (51) for the case of
Pr. T is given by (43). Putting y1=1, yz_l and
othermse yi=75=0, and substituting T¢ in (51),

we have
{Fo(Fo+F2h1 l}{FO(F0+F2h2 2F%2}
= {FO Fhl—hz +Fh1+h2) 2Fh1Fh2}2'

MacGillavry. We shall use inequality (50) for the
case of any given space group. In this case,

(71)

(72)

Foyn 2 Fnyiny Frying & Fhying

th—h1 ith-.th th—hz +Fh2+hz

th’—hl + th’+h1 th '—hg = th ‘+he -

m—1

Ty = 20<T1Ti>, T, = 2‘ yiC™,

s—1

2 y CR,-lu ezmhgtr (73)

(@) Putting y}=1 and otherwise y¥=0, and sub-
stituting (73) in (50), we have

m—1
EFO{Z Fo_gyn, € mh‘t"} > |Fp, ]2 (74)

(b) Putting yi=1, y1—+l and otherwise ¥=0,
and substituting (73) in (50), we have

1 m . .
o 02 {Fa ryn, @701 + Fo_g yn, e hatr
r=0
1 2Re(Fy\—Rn, €2 P2tr)} > |Fy + Fy 2. (75)

Goedkoop (1950). We shall use inequality (53) for

the case of any given space group. Putting y}=1
and otherwise y5=0, we can obtain from (53)

m—l
o Fol 2 R P ermvi) = 1B, 0,0 (76)
Lifgren. We shall use inequality (50) for the case
of any given space group.
Putting pi=9p(hz), k=0,1,2, ...,
stituting (73) in (50), we have

s—1, and sub-

1 m—1 ¢ s—1 )
—Fy X { 2 |y(hi)[2F g yn, €2 bitr
m =0 k=0

s—=1
F2Re( 33 () () e
E>1=0 ;
—1 )

X 0Py 2.

k=0

= ]\ (77)
4-2. Inequalities of general form
Karle & Hauptman. We shall use inequalities (40)
for the case of P; i.e. inequalities (29). Putting
=0f and substituting T given by (41) in (29),
we obtam

Fhl—hl Fhl—hz . Fhl—hn' !
‘ Fh2~h1 th—hz . th—hn’ i >0,
| .
i Fppon th'—hz cee th'——hn' |
n'=1,2,.... (78)

Bouman. We shall use inequalities (40) for the case
of P;. Putting yf=0f and substituting T§ (cor-
responding to u=1, 2) given by (45) in (40), we can
obtain that

oo Foyng 2 Fpyiny |

- Fryny * Fryiny 1
|
|
i (79)

. th ‘—hy’ + th ‘+hy’

Goedkoop (1952). We shall use inequalities (40) for
the case of any given space group.

Putting pf=0f, we can obtain the elements T
from (39) as follows.

m—1

T(") 2P (R’)Fhl——lhh g2nihjty — F(“) p=L2...,1.
=0 (80)
From (40) with (80), we have
[FQ FE ... FT
,. F® Fo F&
rinc. g1 fgo ... Ly, .
gubdet. T =0, w=12,0,0
| F® F® ... F® | (81)

which is a form in close relationship with that of
Goedkoop (1952), (Oda, Naya & Taguchi, 1961).
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5. Conclusion

We have derived a general type of inequalities (40).
This theory shows that (40) contains not only the
‘fundamental form of inequalities’ (81) given in our
previous paper, but also covers all the inequalities of
other types so far found by different authors. One
might arrive at the same results from a different
approach. However, we intended to show explicitly
that expression (40) can also be derived from a matrix
of Karle & Hauptman’s type, and that the inequality
relations to be imposed among structure factors can
be reduced entirely to the geometrical characters of
the unitary space.

In conclusion, we shall note that various inequalities
can be derived using other irreducible representations,
and we hope that some useful inequalities will be
derived from this theory for particular space group
for practical purpose. The methods presented in this
paper may also be applied to other fields of crystallo-
graphy.

APPENDIX I

The scalar product between two base vectors e, and
ey; given by (22) becomes

N—1 N-1

1 h, —2nth
<erler,> 5 2 2 <Ch7‘C 1>e2n1.h/(r1/7\ 2nihyry/ N
N hy=0h;=0
1 N—-1 N-1

- 2 2 Fhk—hl e"Zni(hkr,'—hlrj)/N .
N3 hz=0 h;=0

(I-1)

Using the periodic condition for Fy (Taguchi &
Naya, 1958) and remembering that

N—-1
2nthgri/ N
0r; = ZFhke" 13378 ,

(I-2)
hz=0
and
1 3 X
lﬁh ké‘oe thi(ri—rp/y — (Sm}. , (I-3)
we can easily transform (I-1) to
—1 1 N-1
z Fh 21z’(hk—hz)r,'/N.__ 2 e2nihl(l‘i—r;’)/t"
hy=0 N3 h;=0
-1
= 2 Fhk—hle‘zm(hk_hDri/Narirj= Qri(srir,' . (1—4)

hj—h;=0

APPENDIX II

For the sake of simplicity, we shall introduce an
Euclidian space F as considered by von Eller, so that
all F, become real.

(I) Any normalized base vector is expressed by

T;

= @—1’? > <ﬁiDi>=l, ’l:—_—'l, 2, B (II-I)
i

The scalar product of two normalized base vectors
D; and D: gives the direction cosine between these
two vectors. Obviously

—~1<{DD:)<1. (11-2)

(II) Let g2, @23 and @z be the angles between any
two of three normalized base vectors D, D2 and Ds
respectively. Namely,

py=cos1 (DD, i+j=1,2,3. (I[-3)

@12, @23 and @31 represent also the three sides of a
spherical triangle. Accordingly, it follows

0 < g2+ g@a+on <2xn,
@12 < @23+ @31,
@23 < @31+ @12,

@31 < Q12+ @e3 , (I1-4)

similarly to von Eller.
(III) Now let us consider the square of volume of
a n-dimensional parallel-polyhedron:

o1 <D1D2> . (D)
By 1 DDy
l <D’ILD1> <DnD2> 1 : (11“5)
which is constructed by n base vectors D1, Do, ..., Dy.

By simple geometrical considerations, it follows that
(I1-5) is not only more than zero and less than unity
for each degree n of the determinants, but also they
decrcase as the degree » increases. Namely,

1| 1 DDy 1 (D1Ds) (D:Ds)
(D:Dy) 1 <D2D1) 1 (DaDgy|= ...
: <D3D1> (DsDz) 1
A <13192> .{D1Dy) | |
S ON <D2D">l >...20.
| <DnD1> <DnD2> 1 (II—6)

APPENDIX 111
We shall use the following base vectors which are
expressed by a linear combination of T7.
i=1,2,...,
u=12,...,1,
(III-1)

m—1
Tg'”);a = V(n,,/m) 2!; [Py(Rp)]aﬁT’?’
p=

where the coefficients [P,(R,)],; represent the «f
element of the uth jrreducible representation for the
elements R, of the point group. The scalar product
of two base vectors T¢:5 and T} becomes to be

<i1(/4). a, T(v). y> —

m—1 m—1
V(n,mn,[m2) X 2[

p=0¢=0

Using (34),

(R)GIP(R) e (TETYy . (III-2)
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[P,(R),s (TP TT)
m—1
= Z; Or,R.R7' 1

<§ [P, (R,)],.[P, (R,)La) Ty,

(11I-3)
and using the orthogonality relation for the irreducible
representation,

2 [P;L(Rp)] [Pv(Rp)]yc = (m/n,u) 6;0'6376;95 . (III_4’)

Substltutmg (ITI-3) and (I11-4) in (I1I-2), we can
obtain that

<T(u) £ TO-1y = { 2 P (R.)]s <T TT)} w
= (111—5)

Namely, for each case of given 7 and j, the scalar
products of the base vectors shown by (III-1) just
equal to the 86 element of (39) when pu=v and x=1y,
and equal to zero when u=y or x=y (i.e. the base
vectors are orthogonal with each other). In order to
derive his inequalities, Goedkoop (1950) used a rela-
tion similar to this for the case of 7=j of (III-2).
But, at first sight, the necessity of the introduction of
the base vectors (III-1) characterized by terms of the
irreducible representation of the point group seems to
be less obvious than those shown in 3-2.

APPENDIX IV

Example 1. P2i/c
The factor group is expressed by

=(R0ito), S1=(Ri|t1), S2=(Reltz), Ss=(Rs|ts) ,
where (IV=1)
Ry=1, Ri=1, R.=U, R;=1U, (IV-2)
and

0
to=t=0, te=1t3= {12‘} . (IV-3)

1

p)

I represents the operation of inversion with respect
to the origin and U the operation of two-fold rotation
with respect to the b-axis. The point group:

(RO: Ry, R, R3)= (l’ I’ U’ IU) (IV—4)
is a commutative group of the order four and its
irreducible representations which are one-dimensional
are given by

P, (Ro)=P,(R:1)=P1(Rz)=P1(R3)=1,

P:(Ro)=P: (R1)=1 Po(Ry)=Py(Rs)=—1,
Ps3(Ro)= Pz (R2)= P3(R3)—P3(R1)=—1 )
Ps(Ro)=Ps(R3)=1, Ps(R1)=Ps(R2)=—1. (IV-5)

Using (IV-2), (IV-3) and (IV-5),

we can easily
obtain T (n=1, 2, 3, 4) from (39).

Example 2. P42
The point group is expressed by

(Ro, R1, Rs, R3, R4, Rs, R, R7)

= (13 U4, Uﬁ’ Ug’ U2, U2U4’ U?-UE: U2U2) s (IV“G)

where Uy represents the four-fold rotation with respect
to the c-axis and U: the two-fold rotation with respect
to the b-axis. The non-commutative group (IV-6) of
order eight has the following five classes.

(1)3 (l].i): (U4’ Uz), (U‘_’s U2U§)9 (UZLTM Uszls) .
(IV-7)
Hence, the five different irreducible representations

are obtained.
The relation (19) is expressed by

124124124124 22=8 . (Iv-8)

Accordingly, we have the four different irreducible
representations of one-dimension and one irreducible
representation of two-dimensions. Each of them is
given as follows.

P1(Ro)=P1(R1)=P1(R2)=P1 (R3)
=Py (R4)=P,(R;)=P1(Re)=P1(R7)=1,
P2 (Ro)=P2(R1)=P2(Ro)=P2(R3)=1,
Py (Rs)=P:(Rs5)=P2(Re)=P2(R7)=—1,
P3(Ro)=P3(Rz)=P3(R4)=P3(Re)=1,
Ps(R,)=P;3(R3)=P;3(Rs)=P;s(R;)= —1,
Py(Ro)=Ps(Rs)=P4s(Rs5)=Ps(R;)=1,
Pi(R1)=P4s(R3)=Ps(Rg)=P4s(Rs)= ,
10 ) 0’
P;(Ro) = IO 11, P;(R.) = l[z) i
—1 07
[ . _1 <R3)=[ o
01 0 —2
9=[7 ) Potk = (7 TG,
r0 - 0 7
Re)*{ 1 J, Ps(’b)f—[_g.é!-
' ©(IV-9)

Using (IV-6) and (IV-9), we can casily obtain
T (n=1,2, 3, 4,5) from (39).

In conclusion, the author should like to express his
hearty thanks to the late Dr I. Taguchi who drew the
author’s attention to this fascinating problem and
gave him valuable suggestions, and to Prof. I. Nitta,
T. Watanabe and K. Husimi for their guidance and
criticism, and to Prof. T. Oda for his kind discussion.
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The Crystal Structure of Sodium Bicarbonate

By RonaLp L. Sass aND RoNaLD F. SCHEUERMAN
Department of Chemistry, Rice University, Houston, Texas, U.S.A4.

(Recetved 10 April 1961)

The atomic parameters in sodium bicarbonate are redetermined. The resulting bicarbonate ion
structure differs significantly from that found in other salts. The bicarbonate ion was found to have
Cy symmetry (excluding the hydrogen atom), with C—O bond distances equal to 1-346, 1-264 and
1-263 A. The hydrogen bond distance between adjacent bicarbonate ions is 2-595 A. These dimen-
sions are compared with those in related compounds.

Introduction

The bicarbonate salts are a rather interesting series
of compounds which illustrate the effects of crystal
packing on the internal structure of covalently bonded
molecules. Three such salts which have been studied
by X-ray diffraction are potassium bicarbonate (Nitta,
Tomiie & Hoo Koe, 1952), sodium sesquicarbonate
(Brown, Peiser & Turner-Jones, 1949) and sodium
bicarbonate (Zachariasen, 1933). These systems each
crystallize by utilizing a different hydrogen bond-
ing scheme and show marked differences in the car-
bon-oxygen lengths of the anion. The solution of the
structure of sodium bicarbonate was obtained, how-
ever, by using the assumption that planar trigonal
carbonate groups exist in the cyrstal with all carbon-
oxygen distances equal to 1-27 A. This assumption
was not valid and only an approximately correct
structure resulted. It is the object of the work re-
ported in this paper to collect new diffraction data
and to reexamine the atomic parameters of this
structure.

Experimental

Small needle-like crystals of sodium bicarbonate
were obtained by slow evaporation of the aqueous
solution in an atmosphere of carbon dioxide. The
resulting crystals were mounted in the usual manner
with the axis of rotation corresponding to the needle
axis. Several crystals had to be examined before one
was found which did not exhibit twinning. The dimen-
sions of this crystal were approximately 0-1 mm. in
diameter x 2 mm.

Oscillation and rotation photographs showed the
Laue symmetry to be Cen—2/m. Systematic absences

led to the space group assignment of C3,-P2i/c, in
agreement with Zachariasen (in his paper Zachariasen
used the related unit cell having symmetry 03,~P2:/n).
The unit cell dimensions obtained, compared with
those of Zachariasen, are shown below.

This investigation Zachariasen (P2,/c)

a=351+0-01 A a=3-53+0-03 &
b=9-71+0.01 b=9-70 + 0-04
¢=8:05+ 0-01 c=811+0-04
g=111°51’ B=112°25'

a:b:¢=0-361:1:0-829 a:b:c=0-364:1:0-836

The above axial ratios may be compared to the values
of a:b:¢=0-3582:1:0-8253 determined optically by
Groth (1908). Assuming four molecules per unit cell,
the calculated density is 2-19 g.cm.—3, compared to
the experimental density of 2-22 g.cm.~3 reported by
Groth (1908) and 2-20 g.cm.-2 listed in the Internatio-
nal Critical Tables (1926).

Multiple film Weissenberg photographs of the
h=0, 1, and 2 layers were recorded using Cu Ko«
radiation. The intensities of the various reflections
were estimated visually in the usual manner with
the aid of an intensity strip. Correlation of the inten-
sities of the various sets of film was made by compari-
son to a photograph which contained fifteen minute
exposures of a twenty-five degree portion of each
layer; absorption was neglected.

Treatment of data

A Fourier projection down the a axis was calculated
using the magnitudes of the structure factors ob-
tained from our intensity data and signs based on



